
MODULE 1 – THE BIG PICTURE

IT 207 – IT Programming



GEORGE MASON UNIVERSITY

LECTURE 1 – OUTLINE

 What is a Web application and how does it work?
 What does HTTP and URL stand for?
 Types of client-server applications 
 Server concurrency and server design
 Nodejs Performance and I/O Scaling Problem

 Node.js Basic Architecture 



WEB 
APPLICATION 
OVERVIEW



GEORGE MASON UNIVERSITY

WEB APPLICATIONS

 A web application is
 A distributed application that uses a Client-server architecture
 Its code is stored and runs on a server.
 Interacts with the user through a browser

Internet

Client

Server



GEORGE MASON UNIVERSITY

WEB APPLICATIONS CONT’
 A web application is
 A distributed application
 Client-server program
 Executes locally in the user browser
 Its code is stored on a server.

 Examples:
 Web email,
 Shopping carts,
 Online banking
 Etc. Internet

Client

Server



GEORGE MASON UNIVERSITY

WEB APPLICATIONS – HOW DOES IT WORK?
 The user types a URL in the browser

Internet

Client

Server

Uniform resource locator

URL http://www.Google.com



GEORGE MASON UNIVERSITY

WEB APPLICATIONS – HOW DOES IT WORK? 
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 

HTTP Request

Internet

Client

Server

Hyper Text Transfer protocol



GEORGE MASON UNIVERSITY

WEB APPLICATIONS – HOW DOES IT WORK?  
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request.

Internet

Client

Server



GEORGE MASON UNIVERSITY

WEB APPLICATIONS – HOW DOES IT WORK?   
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request 
 The servers sends back the requested web resource(s) in an HTTP 

response

Internet

Client

Server

HTTP Response



GEORGE MASON UNIVERSITY

WEB APPLICATIONS – HOW DOES IT WORK?     
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request 
 The servers sends back the requested web resource(s) in an HTTP response
 The browser logs the response in its window

Internet

Client

Server



HTTP, URL & 
TYPES OF CLIENT-
SERVER APPS 



GEORGE MASON UNIVERSITY

HYPER TEXT TRANSFER PROTOCOL

 Protocol:
 set of rules that defines how data is formatted, sent, and received

between computers on the network. 



GEORGE MASON UNIVERSITY

HYPER TEXT TRANSFER PROTOCOL

 Protocol:
 set of rules that defines how data is formatted, sent, and received 

between computers on the network. 

 HTTP: 
 The main protocol used for data exchange on the web.
 It was invented alongside HTML to create the first interactive, text-

based web browser.
 It is a client-server protocol that defines two types of messages:
 requests, and 
 responses.



GEORGE MASON UNIVERSITY

HTTP MESSAGES

 Request:
 HTTP requests are sent by the client to trigger an action on the server.
 HTTP defines several request methods
 POST
 GET
 DELETE
 PUT

 Responses:
 HTTP responses are sent back by the server to the client carrying the results of 

the action triggered by the request. 
 The action triggered depends on the request method



GEORGE MASON UNIVERSITY

UNIFORM RESOURCE LOCATOR

 Resource:
 A resource can be an HTML page, a CSS document, or an image.

 A URL has the form 

 URL is is first sent to a DNS to get the equivalent server address
before sending out the request on to the Internet.

https://developer.mozilla.org/en-US/docs/Learn/Server-side

Protocol Domain name

Path/Page



GEORGE MASON UNIVERSITY

TYPES OF CLIENT-SERVER APPLICATIONS

 Data Intensive 
 Applications that make an intense usage of data in all its forms.
 Vast majority of web applications.
 Require frequent access to data storage to either store data or retrieve data.



GEORGE MASON UNIVERSITY

TYPES OF CLIENT-SERVER APPLICATIONS

 Data Intensive 
 Applications that make an intense usage of data in all its forms.
 Vast majority of web applications.
 Require frequent access to data storage to either store data or retrieve data.

 CPU Intensive 
 Applications that depend heavily on the CPU to perform intensive 

computations.
 Rarely perform I/O operations
 Usually done offline



CONCURRENT 
SERVER 
DESIGNS



GEORGE MASON UNIVERSITY

SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).



GEORGE MASON UNIVERSITY

SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

 Shopping cart Scenario

Server



GEORGE MASON UNIVERSITY

SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

Process:
As instance of a running program

Concurrency:
A technique in which two or more processes execute on the 
same CPU in an interleaved fashion



GEORGE MASON UNIVERSITY

SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

 Server concurrency can be done through
 Forking 
 Threading
 Multiplexing



APPROACHES TO 
CONCURRENCY
FORKING



GEORGE MASON UNIVERSITY

SERVER DESIGN
 Forking
 A new process is created For each request 

received. 
 Used by traditional web servers to serve 

multiple requests concurrently.

 Forking is an expensive
 Each new process is allocated memory and 

takes a share of the CPU time.

 Forking is inefficient
 During  database access, a process takes up 

CPU and memory while idling and waiting for 
the database response.

Database takes a long 
time to respond



GEORGE MASON UNIVERSITY

SERVER DESIGN – THREADS VS. PROCESSES

A thread is a sequence of code that is 
executed within the scope of the process.

Forking

Server

Threading

Server



GEORGE MASON UNIVERSITY

SERVER DESIGN – THREADS VS. PROCESSES
 Threading: 
 The server creates a thread pool within a single process.
 Threads within the process share the code,  but each thread will have a private memory space 

for its data.
 Thread are called light processes since they are  less demanding with respect to memory 

requirements.
 Threads still need a share of the CPU time (cycles) to run.



GEORGE MASON UNIVERSITY

ACTIVITY MONITOR – THREADS VS PROCESSES



GEORGE MASON UNIVERSITY

SERVER DESIGN – THREADING
 Threading
 Modern servers use a thread from a 

thread pool to serve each request.
 The thread is reserved for the request in 

the entire duration that the request is 
being handled

 Threading is inefficient
 Threads waste CPU cycles while idling

and waiting for the database response.



GEORGE MASON UNIVERSITY

SERVER DESIGN – MULTIPLEXING

 Multiplexing: 
 The server has one single process with one main thread to serve client’s 

requests
 Requests arriving at the server are stored in a queue and are served by the 

single thread in turn in a first come first served fashion.
 If a request initiates a blocking operation (reading a file, querying DB, etc.…), 

the operation is passed over to be fulfilled in the background and the main 
thread is free to serve another request.

 Once the blocking operation is complete the result will be sent back to the 
main thread.

 The main thread sends the result to the client in a response message



GEORGE MASON UNIVERSITY

SERVER DESIGN - THREADING VS MULTIPLEXING

The NGINX server is a multiplexing server
The APACHE server is a threading server

When compared to APACHE, the NIGINX server can 
serve more concurrent connections while having a 
very low memory footprint



GEORGE MASON UNIVERSITY

NODEJS PERFORMANCE

 Nodejs builds on the multiplexing principle used by the NIGINX and 
utilizes the single thread executing in JavaScript to have an extremely 
low-memory footprint when operating a web server



NODEJS 
ARCHITECTURE



GEORGE MASON UNIVERSITY

NODE.JS
 As stated on the Official Node page

 Open Source: Nodejs code is made available for use or modification as users or other 
developers see fit.

 Cross platform: Compatible to run on different operating systems and different computer 
architectures.

 Runtime Environment: The environment in which a program or application is executed. It's the 
hardware and software infrastructure that supports the running of a particular codebase in 
real time.

 JavaScript Engine: a program converts JavaScript code into machine language that can be 
executed on the computer

“Node.js is a single threaded, open-source, cross-platform JavaScript runtime environment, built on top 
of the Google Chrome V8 JavaScript engine. Node.js is mainly used to create web servers - but it's not 

limited to just that.”



GEORGE MASON UNIVERSITY

NODE.JS BASIC ARCHITECTURE

EVENT 
LOOP

C++ APIs

EVENT QUEUE

File System

Database

Etc..



GEORGE MASON UNIVERSITY

THE EVENT LOOP IN ACTION

What is the expected 
output?



NODEJS 
OPERATION –
AN EXAMPLE



GEORGE MASON UNIVERSITY

EXAMPLE: NODEJS OPERATION
 Clients send requests to the Nodejs Server. 
 Each request received at the Nodejs server is considered as an event. 
 Requests get queued into the event queue and are handled by the always-

running event loop in a first come first serve order. 



GEORGE MASON UNIVERSITY

EXAMPLE: NODEJS OPERATION
 All requests have a callback function associated with them. 
 If a request requires a task that needs time to complete, the event loop passes 

the task to the C++ API in the background. 



GEORGE MASON UNIVERSITY

EXAMPLE: NODEJS OPERATION
 When the C++ API completes the task, it returns the result through the callback 

function 
 The Event loop executes the callback function which returns the result in a 

response to the client.



GEORGE MASON UNIVERSITY

SUMMARY
 Web application is a distributed applications that is composed of two parts; the 

Client and the Server.
 Client and Server use the HTTP communication protocol for exchanging 

messages.
 HTTP defines two type of messages requests and responses.
 There are different approaches to support server concurrency.
 To achieve concurrency for data intensive applications multiplexing showed 

better performance over forking and threading
 Nodejs is a runtime environment for JavaScript built over Google’s V8 JS engine  
 Nodejs builds on the multiplexing principle and utilizes the single thread 

executing in JavaScript to to create highly performant and efficient web servers.



GEORGE MASON UNIVERSITY

REFERENCES
1. Syed, Basarat Ali. Beginning Node.js. Berkeley, CA: Apress. Web.
2. NodeJS Event Loop Overview, https://o7planning.org/11951/nodejs-event-loop
3. Server-side website programming, https://developer.mozilla.org/en-

US/docs/Learn/Server-side

https://o7planning.org/11951/nodejs-event-loop
https://developer.mozilla.org/en-US/docs/Learn/Server-side

	Module 1 – The big picture
	Lecture 1 – Outline
	Web Application overview
	Web Applications
	Web Applications Cont’
	Web Applications – how does it work?
	Web Applications – How does it work? 
	Web Applications – How does it work?  
	Web Applications – How does it work?   
	Web Applications – How does it work?     
	http, URL & Types of Client-Server Apps 
	Hyper Text Transfer Protocol
	Hyper Text Transfer Protocol 
	HTTP Messages
	Uniform Resource Locator
	Types of Client-Server Applications
	Types of Client-Server Applications 
	Concurrent Server Designs
	Server Concurrency & Server Design
	Server Concurrency & Server Design   
	Server Concurrency & Server Design  
	Server Concurrency & Server Design 
	Approaches to Concurrency�Forking
	Server Design
	Server Design – Threads vs. Processes
	Server Design – Threads vs. Processes 
	Activity Monitor – Threads vs Processes
	Server Design – Threading
	Server Design – Multiplexing
	Server Design - Threading vs Multiplexing
	Nodejs Performance
	Nodejs Architecture�
	Node.js
	Node.js Basic Architecture
	The Event loop in Action
	Nodejs Operation – An Example
	Example: Nodejs Operation
	Example: Nodejs Operation 
	Example: Nodejs Operation  
	Summary
	References

