
MODULE 1 – THE BIG PICTURE

IT 207 – IT Programming
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LECTURE 1 – OUTLINE

 What is a Web application and how does it work?
 What does HTTP and URL stand for?
 Types of client-server applications 
 Server concurrency and server design
 Nodejs Performance and I/O Scaling Problem

 Node.js Basic Architecture 
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WEB APPLICATIONS

 A web application is
 A distributed application that uses a Client-server architecture
 Its code is stored and runs on a server.
 Interacts with the user through a browser

Internet

Client

Server
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WEB APPLICATIONS CONT’
 A web application is
 A distributed application
 Client-server program
 Executes locally in the user browser
 Its code is stored on a server.

 Examples:
 Web email,
 Shopping carts,
 Online banking
 Etc. Internet

Client

Server
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WEB APPLICATIONS – HOW DOES IT WORK?
 The user types a URL in the browser

Internet

Client

Server

Uniform resource locator

URL http://www.Google.com
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WEB APPLICATIONS – HOW DOES IT WORK? 
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 

HTTP Request

Internet

Client

Server

Hyper Text Transfer protocol
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WEB APPLICATIONS – HOW DOES IT WORK?  
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request.

Internet

Client

Server
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WEB APPLICATIONS – HOW DOES IT WORK?   
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request 
 The servers sends back the requested web resource(s) in an HTTP 

response

Internet

Client

Server

HTTP Response
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WEB APPLICATIONS – HOW DOES IT WORK?     
 The user types a URL in the browser
 The browser sends a request to the server using HTTP 
 The server processes the request 
 The servers sends back the requested web resource(s) in an HTTP response
 The browser logs the response in its window

Internet

Client

Server



HTTP, URL & 
TYPES OF CLIENT-
SERVER APPS 
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HYPER TEXT TRANSFER PROTOCOL

 Protocol:
 set of rules that defines how data is formatted, sent, and received

between computers on the network. 
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HYPER TEXT TRANSFER PROTOCOL

 Protocol:
 set of rules that defines how data is formatted, sent, and received 

between computers on the network. 

 HTTP: 
 The main protocol used for data exchange on the web.
 It was invented alongside HTML to create the first interactive, text-

based web browser.
 It is a client-server protocol that defines two types of messages:
 requests, and 
 responses.
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HTTP MESSAGES

 Request:
 HTTP requests are sent by the client to trigger an action on the server.
 HTTP defines several request methods
 POST
 GET
 DELETE
 PUT

 Responses:
 HTTP responses are sent back by the server to the client carrying the results of 

the action triggered by the request. 
 The action triggered depends on the request method
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UNIFORM RESOURCE LOCATOR

 Resource:
 A resource can be an HTML page, a CSS document, or an image.

 A URL has the form 

 URL is is first sent to a DNS to get the equivalent server address
before sending out the request on to the Internet.

https://developer.mozilla.org/en-US/docs/Learn/Server-side

Protocol Domain name

Path/Page
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TYPES OF CLIENT-SERVER APPLICATIONS

 Data Intensive 
 Applications that make an intense usage of data in all its forms.
 Vast majority of web applications.
 Require frequent access to data storage to either store data or retrieve data.
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TYPES OF CLIENT-SERVER APPLICATIONS

 Data Intensive 
 Applications that make an intense usage of data in all its forms.
 Vast majority of web applications.
 Require frequent access to data storage to either store data or retrieve data.

 CPU Intensive 
 Applications that depend heavily on the CPU to perform intensive 

computations.
 Rarely perform I/O operations
 Usually done offline
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SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).
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SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

 Shopping cart Scenario

Server
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SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

Process:
As instance of a running program

Concurrency:
A technique in which two or more processes execute on the 
same CPU in an interleaved fashion
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SERVER CONCURRENCY & SERVER DESIGN

 In a Client-Server architecture, a server is a program that provides 
services to its clients through a request/response communication 
protocol.
 The server is required to serve many clients concurrently.
 The server runs multiple instances of its programs (processes).

 Server concurrency can be done through
 Forking 
 Threading
 Multiplexing



APPROACHES TO 
CONCURRENCY
FORKING
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SERVER DESIGN
 Forking
 A new process is created For each request 

received. 
 Used by traditional web servers to serve 

multiple requests concurrently.

 Forking is an expensive
 Each new process is allocated memory and 

takes a share of the CPU time.

 Forking is inefficient
 During  database access, a process takes up 

CPU and memory while idling and waiting for 
the database response.

Database takes a long 
time to respond
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SERVER DESIGN – THREADS VS. PROCESSES

A thread is a sequence of code that is 
executed within the scope of the process.

Forking

Server

Threading

Server
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SERVER DESIGN – THREADS VS. PROCESSES
 Threading: 
 The server creates a thread pool within a single process.
 Threads within the process share the code,  but each thread will have a private memory space 

for its data.
 Thread are called light processes since they are  less demanding with respect to memory 

requirements.
 Threads still need a share of the CPU time (cycles) to run.
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ACTIVITY MONITOR – THREADS VS PROCESSES
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SERVER DESIGN – THREADING
 Threading
 Modern servers use a thread from a 

thread pool to serve each request.
 The thread is reserved for the request in 

the entire duration that the request is 
being handled

 Threading is inefficient
 Threads waste CPU cycles while idling

and waiting for the database response.
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SERVER DESIGN – MULTIPLEXING

 Multiplexing: 
 The server has one single process with one main thread to serve client’s 

requests
 Requests arriving at the server are stored in a queue and are served by the 

single thread in turn in a first come first served fashion.
 If a request initiates a blocking operation (reading a file, querying DB, etc.…), 

the operation is passed over to be fulfilled in the background and the main 
thread is free to serve another request.

 Once the blocking operation is complete the result will be sent back to the 
main thread.

 The main thread sends the result to the client in a response message
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SERVER DESIGN - THREADING VS MULTIPLEXING

The NGINX server is a multiplexing server
The APACHE server is a threading server

When compared to APACHE, the NIGINX server can 
serve more concurrent connections while having a 
very low memory footprint
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NODEJS PERFORMANCE

 Nodejs builds on the multiplexing principle used by the NIGINX and 
utilizes the single thread executing in JavaScript to have an extremely 
low-memory footprint when operating a web server



NODEJS 
ARCHITECTURE



GEORGE MASON UNIVERSITY

NODE.JS
 As stated on the Official Node page

 Open Source: Nodejs code is made available for use or modification as users or other 
developers see fit.

 Cross platform: Compatible to run on different operating systems and different computer 
architectures.

 Runtime Environment: The environment in which a program or application is executed. It's the 
hardware and software infrastructure that supports the running of a particular codebase in 
real time.

 JavaScript Engine: a program converts JavaScript code into machine language that can be 
executed on the computer

“Node.js is a single threaded, open-source, cross-platform JavaScript runtime environment, built on top 
of the Google Chrome V8 JavaScript engine. Node.js is mainly used to create web servers - but it's not 

limited to just that.”
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NODE.JS BASIC ARCHITECTURE

EVENT 
LOOP

C++ APIs

EVENT QUEUE

File System

Database

Etc..
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THE EVENT LOOP IN ACTION

What is the expected 
output?



NODEJS 
OPERATION –
AN EXAMPLE
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EXAMPLE: NODEJS OPERATION
 Clients send requests to the Nodejs Server. 
 Each request received at the Nodejs server is considered as an event. 
 Requests get queued into the event queue and are handled by the always-

running event loop in a first come first serve order. 
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EXAMPLE: NODEJS OPERATION
 All requests have a callback function associated with them. 
 If a request requires a task that needs time to complete, the event loop passes 

the task to the C++ API in the background. 
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EXAMPLE: NODEJS OPERATION
 When the C++ API completes the task, it returns the result through the callback 

function 
 The Event loop executes the callback function which returns the result in a 

response to the client.
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SUMMARY
 Web application is a distributed applications that is composed of two parts; the 

Client and the Server.
 Client and Server use the HTTP communication protocol for exchanging 

messages.
 HTTP defines two type of messages requests and responses.
 There are different approaches to support server concurrency.
 To achieve concurrency for data intensive applications multiplexing showed 

better performance over forking and threading
 Nodejs is a runtime environment for JavaScript built over Google’s V8 JS engine  
 Nodejs builds on the multiplexing principle and utilizes the single thread 

executing in JavaScript to to create highly performant and efficient web servers.
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